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Abstract—The rapid geographical expansion of the Cassava
Brown Streak Disease (CBSD) pandemic has devastated cassava
crops in East and Central Africa. This has necessitated an
upsurge of surveillance efforts for the disease. To monitor CBSD,
surveyors deal with single fields of plants at a time. Diagnosis
is performed by examining a cross-section cutting of the cassava
root tuber. A score of severity of disease is visually assigned to the
plant based on the percentage of necrotised root. This method
tends to be sub-optimal since scores are highly subjective due
to operator variability. This study investigates various computer
vision techniques that could be employed to standardise the
scoring. Our investigation follows five stages. In stage one images
were acquired using mobile devices. In stage two, different
techniques are employed to obtain an annotated data set that
can be used to train a classifier. Stage three, several classifiers
are employed to classify each pixel of the crop images as healthy
or necrotised. In stage four, the performance of these classifiers
is evaluated based on the Area Under the Curve (AUC), Mean
Absolute Error (MAE) and R2 score. Nearest Neighbour classifier
performs best with a R2 score of 0.789. To assess operator
variability, we compare two sets of predictions from two different
surveyors; a confusion matrix is used express the variability in
scores assigned.

I. INTRODUCTION

Cassava (Manihot esculenta) is an extremely important
crop in Africa, 200 million people in the continent depend
on it. In Sub-Sahara Africa, cassava can represent up to 60%
of the daily calorie intake, and is largely consumed locally.
Cassava grows in moderately poor soils with limited labor
requirements and it is drought tolerant. Thus cassava is a
significant food security crop, mainly in drought-stricken
areas [1][2].

The leading diseases affecting cassava in Uganda and
the East African region are CBSD and Cassava Mosaic
Disease (CMD). CBSD is a risk to food security, because
the severity of root damage caused by the disease escalates
the longer it stays in the field. CBSD, which is caused by a
virus, was at first confined to coastal, low altitude areas in
East Africa, but since the mid-2000s the disease has spread
speedily, affecting Tanzania, Uganda, Kenya, Rwanda and
Burundi. The coverage of the disease presently is around 80%
of crops in Uganda and around 20% of crops in Rwanda and
Burundi [3]. CBSD is a more significant cause of crop loss in
these regions than was earlier believed [4] since the disease
causes both quantitative and qualitative decrease in total root
yield by rotting of roots thus making them unmarketable
and unpalatable. For cassava plants infected with CBSD, the

major part affected is the tuber/root of the plant. To monitor
CBSD, surveyors deal with single fields of plants at a time.
When out in the field, normally they dig up a set of plants
in selected gardens and examine five cross-section cuttings
of the root. A score of severity of disease is allocated to the
plant based on the average percentage of necrotised root of all
five cross-sections examined. However, visual assessment of
the symptoms to determine the score of severity of disease of
a root by an expert may differ from the score of severity by
another thus rendering this method inconsistent. To quantify
the problem of operator variability, we asked two experts
to assign scores of severity of disease to the same cassava
cross-section cutting of the root, the results were obtained
and the level of disagreement was obtained.

This paper presents an innovation to overcome this challenge.
We present computer vision techniques for using camera-
enabled mobile devices to automatically assign a score of
severity of necrosis directly. This means survey workers with
lower levels of training can be used for the surveys, and thus
reducing survey costs. Given expert-annotated single images
of infected cassava tubers, we also demonstrate classification
of cassava root tubers based on pixel information.

II. RELATED WORK

According to Mahlein et al. [5], Spectral Vegetation Indices
(SVIs) have been shown to be useful for an indirect detection
of plant diseases. Nevertheless, these indices have not been
evaluated to detect or to differentiate between plant diseases in
crops. Their study developed specific Spectral Disease Indices
(SDIs) for the detection of diseases in crops. Sugar beet
plants and the three leaf diseases Cercospora leaf spot, sugar
beet rust and powdery mildew were used as sample diseases.
Hyperspectral signatures of healthy and diseased sugar beet
leaves were assessed with a non-imaging spectroradiometer
at different developing stages and disease severities of
pathogens. To develop hyperspectral indices for the detection
of sugar beet diseases the best weighted combination of a
single wavelength and a normalised wavelength difference
was thoroughly searched testing all potential groupings.
The optimised disease indices were tested for their ability
to detect and to classify healthy and diseased sugar beet
leaves. With a high accuracy and sensitivity healthy sugar
beet leaves and leaves, infected with Cercospora leaf spot,
sugar beet rust and powdery mildew were classified. Spectral
disease indices were also successfully applied on hyperspectral
imaging data and on non-imaging data from a sugar beet field.
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Fig. 1. Image sample as captured by camera

Smith and Camargo [6] developed an image-processing
based algorithm to automatically identify plant disease visual
symptoms. The study described an image-processing based
method that identifies the visual symptoms of plant diseases
by analysis of colored images. Results showed that the
developed algorithm was able to identify a diseased region
even when that region was represented by a wide range of
intensities.

A hybrid intelligent system from color imagery for grape leaf
disease detection was suggested by [7]. The system consisted
of three core parts: grape leaf color segmentation, grape
leaf disease segmentation and classification of diseases. The
system was able to classify the image of grape leaf into three
classes which were scab disease, rust disease and no disease.

Smith and Camargo [8] performed an image pattern
classification for the identification of disease causing agents
in plants. A machine vision system for the classification of
the visual symptoms of plant diseases was implemented by
analysis of colored images. A set of image features was
extracted from each diseased region. Feature selection was
then performed to identify which of these provided most
information about the image domain. A Support Vector
Machine (SVM) was used as a learning machine and cross-
validation was the discrimination method used to identify the
best classification model.

III. ASSESSMENT OF OPERATOR VARIABILITY

A. Methods

1) Image Acquisition: Image samples of cross sectional
cut cassava tubers placed on a plain board were captured
from Namulonge Crops resources Research Institute, Uganda.
15 root discs from the same genotype of cassava were cross
sectionally cut, placed on a plain board and captured with a
standard digital camera on mobile device.

2) Expert Annotation: Expert annotation was a process
where an expert visually assigned a score of severity of disease
to the sample images used.

B. Results

1) Confusion Matrix: To assess operator variability, by
comparing two sets of predictions of two different surveyors, a
confusion matrix was used to determine how these predictions
differed. The results are shown in Table I:

TABLE I. SURVEYOR SCORE CONFUSION MATRIX

Scores 1 2 3 4 5

1 1 0 0 0 0
2 0 6 1 0 0
3 0 0 2 3 0
4 0 0 1 3 2
5 0 0 0 0 2

Fig. 2. Cropped image Fig. 3. Binary image

Referring to Table I:

• The rows correspond to the score results as assigned
by Surveyor2.

• The columns correspond to the score results as as-
signed by Surveyor1.

• The diagonal elements in the matrix represent the
number of same score results that both surveyors
assigned to the same image.

• The off-diagonal elements represent the score results
that were assigned differently by both surveyors to the
same images.

◦ Off-diagonal row elements represent Sur-
veyor1’s score results that differed from Sur-
veyor2’s score results. E.g. In the second row,
one image was assigned a score 2 by Sur-
veyor1 and Surveyor2 assigned the same image
a score of 3.

◦ Off-diagonal column elements represent Sur-
veyor2’s score results that differed from Sur-
veyor1’s score results. E.g. In the fourth col-
umn, three images were assigned a score of 4
by Surveyor2 and Surveyor1 assigned the same
image a score of 3.

Based on the outcome of the confusion matrix, it is seen
that different scores are assigned to the same image by two
different surveyors. This shows how this method has problems
with operator variability and therefore an automated system is
a more feasible solution as compared to the surveyor visual
assignment method.

IV. AUTOMATED SYMPTOM MEASUREMENT

A. Methods

1) Image Segmentation: In this study, images were cropped
manually using a cropping tool. However, cropped images
had a white background and working with the whole image
also brings inaccurate results too. To eliminate the white back
ground, only non-pure white pixels in the image were extracted
automatically, Samples of the resulting cropped image and
binary image are shown in Figure 2 and Figure 3 respectively.
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A threshold was applied separately to each cropped root
image so as to obtain its respective binary image as shown
above. Coordinates of the non-pure white pixels were obtained.
Using these coordinates, from the respective binary image,
each pixel was labeled healthy or necrotised.

2) Ground Truth Data: Image pixel data was extracted
from the original image and its corresponding binary image.
From the original image, the RGB pixel data with the corre-
sponding location coordinates,(i, j) were extracted.

3) Classifier Training: In the classification, the method
used for splitting data set into training and testing was the
k-fold cross-validation sometimes called rotation estimation,
the data set was randomly split into mutually exclusive subsets
of approximately equal size[9]. The classifiers used were;
Nearest Neighbors[10], Decision tree[11][12], Random Forest
[13][14], Naı̈ve Bayes [15] and Support Vector Machine
(Linear SVM)[16][17].

To evaluate classifier performance, four performance measures
were implemented, i.e., Receiver Operating Characteristic
(ROC), AUC and predictive accuracy score, which evaluated
how good the classifiers performed when distinguishing
necrotised pixels from healthy pixels. MAE and R2 score, the
coefficient of determination evaluated how good the classifiers
performed in the overall prediction of the percentage of
necrotisation in the root. The data and source code are
available at https://github.com/tjovia/CBSD.git

B. Results

1) Accuracy per pixel: To choose the best performing
classifier, basing on accuracy per pixel, results of AUC and
predictive accuracy score with cross-validation were obtained.
In this section the results for both methods will be presented.
A ROC graph is a technique for visualising, organising and
selecting classifiers based on their performance. Given a
classifier and an instance, there are four possible outcomes,
i.e., true positive (TP ), false negative (FN), true negative
(TN) and false positive (FP ) [18].

Table II shows the results for AUC obtained for the
different classifiers for the RGB color space. If a classifier
yields a 1.0, then it is a perfect test. 0.9 to 0.99 is an excellent
test, 0.8 to 0.89 is a good test, 0.7 to 0.79 is a fair test,
0.6 to 0.69 is a poor test, 0.5 to 0.59 is a failed test and
below 0.5 the classifier is negatively correlated with the target.

With Predictive Accuracy Score, the accuracy of the
test approximates how effective the algorithm is by showing
the probability of the true value of the class label; summing
it all up, it evaluates the overall effectiveness of the algorithm
[19]. The higher the probability, the higher the predictive
accuracy score. Four sample images were used to determine
the probabilities as shown in Table III.

2) Accuracy per root sample: Performance measures used
to determine best performing classifier, basing on accuracy per
root sample, were Mean Absolute Error (MAE) and R2 Score,
the Coefficient of Determination. yi, the actual percentage of
necrosis, was calculated by dividing the number of necrotised
pixels in an image i by the total number of pixels in the

TABLE II. AUC OF CLASSIFIERS FOR RGB COLOR SPACE

Sample Image Image1 Image2 Image3 Image4

Naı̈ve Bayes 0.96 0.96 0.96 0.96

Linear SVM 0.97 0.96 0.97 0.97

Decision Tree 0.96 0.96 0.97 0.96

Nearest Neighbors 0.96 0.96 0.96 0.96

Random Forests 0.97 0.97 0.97 0.97

TABLE III. ACCURACY SCORE OF CLASSIFIERS FOR RGB COLOR
SPACE

Sample Image Image1 Image2 Image3 Image4

Naı̈ve Bayes 0.90 0.89 0.90 0.89

Linear SVM 0.92 0.91 0.91 0.92

Decision Tree 0.92 0.92 0.92 0.92

Nearest Neighbors 0.92 0.92 0.92 0.92

Random Forests 0.92 0.92 0.92 0.92

TABLE IV. MEAN ABSOLUTE ERROR FOR THE DIFFERENT
CLASSIFIERS

Classifier Mean Absolute Error

Naı̈ve Bayes 0.049

Linear SVM 0.059

Decision Tree 0.052

Nearest Neighbors 0.049

Random Forest 0.053

image i and this was compared to ŷi, the predicted percentage
of necrosis. In this section the results for both methods will
be presented. The MAE was used to measure how close
predictions of the overall percentage of necrotisation of a root
were to the actual percentage of necrotisation of the root. The
MAE estimated over N is defined as;

MAE(y, ŷ) =
1

N

N�

i=1

|yi − ŷi| . (1)

where ŷi is the predicted value of the i-th sample and yi
is the corresponding true value.

The results for (MAE) for the different classifiers are
shown in Table IV.

The R2 score, the coefficient of determination was calculated
and this provided results on how well the overall percentage of
necrotisation is predicted by the model. If ŷi is the predicted
value of the i-th sample and yi is the corresponding true
value, then the score R2 estimated over N is defined as,

R2(y, ŷ) = 1−
�N

i=1(yi − ŷi)
2

�N
i=1(yi − ȳ)2

(2)

where ȳ = 1
N

�N
i=1 yi.

The results for R2 score for the different classifiers are shown
in Table V.

Naı̈ve Bayes classifier and Nearest Neighbors classifier had
the lowest (MAE) of 0.049 while the other classifiers had a
slightly higher MAE. This meant that Naı̈ve Bayes classifier
and Nearest Neighbors classifier were more reliable models
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TABLE V. R2 SCORE FOR THE DIFFERENT CLASSIFIERS

Classifier R2 score

Naı̈ve Bayes 0.691

Linear SVM 0.605

Decision Tree 0.688

Nearest Neighbors 0.789

Random Forest 0.662

Fig. 4. Surveyor Score and Predicted necrosis Percentage

TABLE VI. R2 SCORE FOR THE DIFFERENT RELATIONSHIPS

Relationship R2 score

Surveyor Score and Predicted necrosis Percentage 0.42

Actual necrosis Percentage and Predicted necrosis Percentage 0.94

Actual necrosis Percentage and Surveyor Score 0.48

compared to the other classifiers. By comparing the classifiers
used, the Nearest Neighbors classifier had the highest result
of the R2 score of 0.789. This means that 79% of the total
variation in Actual Percentage Necrosis is determined by the
linear relationship between Nearest Neighbors Percentage
Necrosis and the Actual Percentage Necrosis. Because of the
highest result of the R2 score compared to other classifiers,
Nearest Neighbors classifier proved to be the more reliable
the model.

The score of necrosis that was visually assigned by an expert
from Namulonge Crops resources Research Institute, the
predicted score of necrosis and the actual score of necrosis for
the sample images was compared. The performance measure
used was Linear least squares fitting and the goal was to
ascertain the relationship between different pairs of these
variables. And these were:

• Surveyor1 and 2 Score and Predicted necrosis Percent-
age.

• Actual necrosis Percentage and Predicted necrosis
Percentage.

• Actual necrosis Percentage and Surveyor1 & Sur-
veyor2 Score.

Linear least squares fitting graphs were plotted as shown
in Figures 4, 5 and 6.

R2 is a measure of how close the data are to the line and the
higher the R2, the better the model fits the data. Based on the

Fig. 5. Actual necrosis Percentage and Predicted necrosis Percentage

Fig. 6. Actual necrosis Percentage and Surveyor Score

results in Table VI, the R2 score of actual necrosis percentage
and predicted necrosis percentage is very high compared to
actual necrosis percentage and surveyor score. This means
from the results in Table VI, the model designed will predict
the overall percentage of necrosis of a root well. Based on
the results of the R2 score after the linear squares fitting, it is
seen how an automated system is a more feasible solution as
compared to the method of surveyor visual score assignment.
From the results of the R2 score of actual necrosis percentage
and predicted necrosis percentage being 0.94 and the highest
as compared to actual necrosis percentage and surveyor score
with an R2 score of 0.48, an automated score assignment to
the necrotised root is a more feasible solution as compared to
the method of surveyor visual score assignment.

V. CONCLUSION

The research has proved that an automatic symptom
measurement system specifically one that assigns a score to
a necrotised cassava tuber infected with CBSD is a feasible
solution, and has consistency advantages as compared to
the surveyor visual score assignment method. If used, it
would avert the challenge of inconsistent data collection by
surveyors and would speed up the process of developing
new cassava varieties that are resistant to CBSD. It has
been shown how different classification techniques have
been applied to automatically assign the score to the cassava
tuber. Five classifiers were tested to get results; all classifiers
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performed well though some performed better than others.
Nearest Neighbors classifier and Naı̈ve Bayes classifier had
the lowest MAE, however Nearest Neighbors classifier had
the highest result of the R2 score and based on that, it was
proved to be the more reliable the model as compared to the
other four classifiers. The model was assessed and the results
proved that it was a more feasible solution as compared to
the method of visual assignment of the score of necrosis.
In the assessment of the feasibility of the model, based on
the results of the confusion matrix and the R2 score after
the linear squares fitting, it was shown how an automated
system is a more feasible solution as compared to the method
of surveyor visual score assignment. From the confusion
matrix, the difference in scores by the surveyors to the same
image showed how the surveyor visual score assignment
has problems with operator variability. From the results of
the R2 score of actual necrosis percentage and predicted
necrosis percentage being the highest as compared to actual
necrosis percentage and surveyor score with an R2 score, it
was demonstrated that an automated score assignment to the
necrotised root is a more feasible solution as compared to the
method of surveyor visual score assignment.

The work can be incorporated in to a mobile version.
This is planned to be done by using Open Data Kit (ODK)
which is a is an open source suite of tools that enables data
collection on mobile phones and data submissions to a central
server. This could then improve on the monitoring of cassava
brown streak disease by providing real-time information
because not only experts but volunteers or farmers can take
the images and then they can be uploaded on to a server at the
research institute where they can be processed. Furthermore,
it could improve on the prediction and optimisation of plant
protection measures since there is consistency of results.

ACKNOWLEDGMENT

The authors would like to thank the AI-DEV group in the
School of Computing and Informatics Technology, Makerere
University for giving thoughts, advice and ideas for improve-
ment of the study and Namulonge Crops resources Research
Institute, Uganda for the support.

REFERENCES
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